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Abstract The objective of this work is to study the transfer

of oxygen from gas to liquid phase in an electroflotation cell.

The measurements were performed in a laboratory scale cell

using insoluble electrodes, titanium coated with ruthenium

oxide as anode and stainless steel as cathode. The volumetric

mass transfer coefficient KLa, was characterized for clean

tap water as liquid phase for different values of current

density (J). The global coefficient of mass transfer based on

the liquid film, KL, and the specific interfacial area, a, were

characterized. A model which relates KLa to current density

was established. Different evaluation criteria of oxygen

transfer in electroflotation process were determined and

compared with other aeration process.

Keywords Current density � Electroflotation � Oxygen

transfer

Nomenclature

a specific interfacial area (m2 m–3)

A gas-liquid interface area (m2)

C oxygen concentration in the liquid (g m–3)

C* oxygen equilibrium concentration in the liquid (g m–3)

C0 initial dissolved oxygen concentration (g m–3)

J current density (A m–2)

dB bubble diameter (lm)

F Faraday constant (C mol–1)

HS static height of the liquid bed (m)

HT total height of the gas – liquid bed (m)

KL global coefficient of mass transfer based on liquid

film (m s–1)

KLa volumetric mass transfer coefficient (s–1)

mO2
oxygen flow rate (g s–1)

MO2
oxygen molar mass (g mol–1)

OC oxygenation capacity (g m–3 h–1)

RO oxygenation efficiency (%)

S surface of the electrodes (m2)

T temperature of the liquid phase (�C)

V aerated liquid volume (m3)

Greek symbols

eg gas hold-up (%)

h empirical coefficient in Eq. (7)

1 Introduction

Electroflotation (EF) was first proposed by Elmore in 1904

for flotation of valuable minerals from ores [1]. EF is a

process that floats pollutants to the surface of a water body

by small bubbles of hydrogen and oxygen generated by

water electrolysis [2]. The electrochemical reactions at the

cathode and the anode are hydrogen evolution and oxygen

evolution, respectively.

Anodic oxidation

2H2O! O2 þ 4Hþ þ 4e� ð1Þ

Cathodic reduction

4H2Oþ 4e� ! 2H2 þ 4OH� ð2Þ

Chen [3] has shown that EF is more competitive than

other flotation technologies such as dissolved air flotation

and dispersed air flotation.
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The effectiveness of the process is limited not only to

the elimination of the polluting substances but also to the

abatement of the dissolved organic matter by oxygen

generated at the anode. Most available electroflotation

process data has shown the effect of EF process in

decreasing Chemical Oxygen Demand (COD) but without

detailing the transfer phenomena [4–7].

The purpose of the present work is to study oxygen

transfer in tap water during electroflotation. In order to

achieve this objective, the volumetric mass transfer coef-

ficient, KLa, at different current densities J must be eval-

uated. KLa is the parameter which characterizes the gas-

liquid mass transfer and is one of the most important

parameters in the design and scale-up of aeration systems.

Several authors have dissociated KLa into the volumetric

interfacial area, a, and the global coefficient of mass

transfer based on the liquid film, KL, [8, 9]. These two

parameters have been determined in this study.

A comparative study with other aeration systems has

been made and a model is also proposed based on the

relationship between, KLa, and current density J.

2 Theory

To determine the volumetric mass transfer coefficient, KLa,

several techniques have been proposed. Most measure-

ments in aeration systems may be divided into two groups:

physical and chemical methods [10]. Among physical

methods, the well-known method is the desorption of an

oxygen saturated solution with nitrogen [11, 12]. Many

chemical methods such as oxidation of glucose [13],

stannous chloride [14], and ethanol [15] have been pro-

posed. In the present work we have adapted the sulphite

oxidation method which is the most widespread technique

for determining the volumetric oxygen transfer coefficient

and the interfacial area per unit of volume [16–18].

For clean tap water the double Film Theory of Lewis

and Whitman is considered [19]. For gases of low solu-

bility, such as oxygen in water, Lewis and Whitman as-

sumed that the gas side resistance is negligible and that the

gas transfer may be determined from considering the liquid

side resistance only:

dC

dt
¼ KL

A

V
C� � Cð Þ ð3Þ

dC

dt
¼ KLa C� � Cð Þ ð4Þ

Equation (4) can be readily integrated to yield the

following expression for C as a function of time

C ¼ C� � C� � C0ð Þ exp �KLa tð Þ ð5Þ

where C0 is the initial dissolved oxygen concentration at t

= 0. A nonlinear regression analysis based on the Gauss–

Newton method is recommended by ASCE to fit eq. (5) to

experimental data using KLa, C* and C0 as three adjustable

model parameters [20].

3 Materials and methods

3.1 Materials

3.1.1 Electroflotation cell

The electroflotation cell, shown in Fig. 1, was a rectangular

column. Its length was 5.8 cm, its width 6.7 cm and its

height 71.5 cm. It was provided with two electrodes: tita-

nium coated with ruthenium oxide anode and a stainless

steel cathode. These two electrodes were supplied by a

D.C. power supply. The electrodes were placed on the

bottom of the cell. An electrode arrangement proposed and

tested by Chen et al. was used, [21] which allows the inter-

electrode gap to be as small as 2 mm (Fig. 2).

3.2 Methods

3.2.1 Volumetric mass transfer coefficient

The volumetric mass transfer coefficient, KLa, was mea-

sured using the unsteady state method with an oxygen

probe (DO meter WTW DurOx 325) placed mid-way in the

electroflotation cell. The oxygen concentration was

reduced to zero by adding 150 mg l–1 of sodium sulphite

(Na2SO3) and 2 mg l–1 of cobalt ions.

2Na2SO3 þ O2 ! 2Na2SO4 ð6Þ

1

2

3

4

5

6

1. Electroflotation cell
2. DO meter 
3. DC power supply 
4. Oxygen probe 
5. Cathode 
6. Anode 

Fig. 1 Schematic diagram of the experimental set-up
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The response time of the oxygen probe is about 25 s.

This duration does not affect the value of KLa determined

under the experimental conditions.

The volumetric mass transfer coefficient was corrected

to a standard reference temperature of 20 �C using the

Arrhenius relationship with empirical coefficient h =

1.0241:

KLa 20�Cð Þ ¼ KLa Tð Þ h 20�Tð Þ ð7Þ

3.2.2 Gas hold-up

Gas hold-up was determined by measuring the aerated li-

quid height relative to the gas-free liquid level using the

bed height method [8]

Gas hold-up, eg , was calculated using Eq. (8):

eg ¼
HT � HS

HT
ð8Þ

3.2.3 Bubble diameter

The bubble size was measured using the image analysis

method. The equipment used was a microscopic zoom

digital video camera (model NV-A3E from Panasonic,

Japan), a magneto scope (model SVR-11G from Samsung

Electronics), an acquisition card (model Pinnacle PCTV

PRO version 4.02 from Pinnacle systems), a PC (model

Pentium 4, from Fujitsu Siemens) with a digital image

analysis program (model Photoshop version 7.0 from

Adobe).

Most of the bubbles were ellipsoidal in shape and the

local bubble diameter was calculated using the following

relationship:

dBi ¼ x2y
� � 1

3ð Þ ð9Þ

where x and y are the diameter and the width of the

ellipsoid respectively. For a given current density, 150–200

bubbles were selected to estimate the Sauter mean

diameter, dB, calculated by Eq. (10):

dB ¼

Pn

i¼1

d3
Bi

Pn

i¼1

d2
Bi

ð10Þ

where n is the number of bubbles with an individual

diameter dBi.

4 Results and discussion

In order to calculate the volumetric mass-transfer coeffi-

cients from the ASCE model using eq. (5) a series of un-

steady-state reoxygenation tests at different current

densities were conducted. The results are shown in Fig. 3.

All the data for different current densities show the same

trend. The oxygen concentration increases at the beginning

of the electrolysis process than stabilizes when it reaches

the equilibrium concentration.

4.1 Volumetric mass transfer coefficient

The volumetric mass transfer coefficient, KLa, is plotted as

a function of current density in Fig. 4. KLa, increases with

current density up to 260 A m–2 and then becomes almost

constant. However, the volumetric mass transfer coeffi-

cient, KLa, is the product of the global coefficient of mass

transfer based on the liquid film, KL, and the volumetric

interfacial area, a. Consequently, these results can be ex-

plained by studying the variation of, a, and KL with current

density.

4.2 Gas hold-up

The gas hold-up, which is one of the most important

parameters characterising the hydrodynamics of reactors,

Anode

Cathode

Fig. 2 Arrangement of electrodes
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Fig. 3 Experimental unsteady-state reoxygenation curves at different

current density
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depends mainly on the gas velocity and physical properties

of the liquid [22]. Figure 5 shows that eg increases with J. It

has been also shown that the gas hold-up eg increases when

the gas is efficiently dispersed and when gas velocity is

increased [23, 24].

4.3 Bubble diameter

Figure 6 shows the effect of current density on bubble

diameters, dB increases almost linearly with J.

4.4 Volumetric interfacial area

The volumetric interfacial area is one of the most important

parameters for gas–liquid reactor design. Generally, the

interfacial area depends on the size of the unit, the oper-

ating parameters and the physical and chemical properties

of the liquid [25]. Knowing the bubble size and gas hold-up

it is possible to evaluate the volumetric interfacial area:

a ¼ 6eg

dB 1� eg

� � ð11Þ

The variation of the volumetric interfacial area with

current density is shown in Fig. 7.

The volumetric interfacial area ranges between 1101 and

1599 m2 m–3 for a current densities between 60 and

400 A m–2. Figure 7 shows that, a, increases continuously

with J. This can be explained by the absence of bubble

coalescence even for high values of current density.

4.5 The global coefficient of mass transfer based

on liquid film, KL

The mass transfer rate depends not only on the gas hold-up

and bubble size but also on the value of KL. The global

coefficient of mass transfer based on liquid film KL

depends on the diffusivity coefficient and turbulence cre-

ated in the liquid phase. The KL values were estimated by

the following relationship:

KL ¼ KLa
dB 1� eg

� �

6eg
ð12Þ

Figure 8 shows that KL increases with increasing current

density values up to 260 A m–2 and then becomes almost

constant at higher current densities.
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Fig. 4 Volumetric mass transfer coefficient versus current density
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The results show that the KL value increases with

increasing current density. At higher current densities, a

larger amount of oxygen was induced into the liquid

phase, resulting in more gas bubbles. Consequently, tur-

bulence created in the liquid phase was more intense.

According to the two-film theory, the film thickness

decreases with increasing turbulence due to the higher

shear force. The mass transfer resistance therefore de-

creases and higher mass transfer rates can be obtained.

Nevertheless, the value will reach a limiting value. This is

similar to previous studies of other types of gas-inducing

contactor [26, 27].

4.6 Relationship between KLa and J

The non-linear regression of the experimental data shown

in Fig. 4 gives a model which relates the volumetric mass

transfer coefficient with current density. The mathematical

software used was DataFit (version 8.1.69).

Equation 13 shows the relationship between KLa and J.

KLa ¼ 1; 796� 10�5
� �

J0;875 ð13Þ

Consequently, using Eq. (5), a relationship between the

dissolved oxygen concentration and the current density can

be established.

C ¼ C� � C� � C0ð Þe � 1;796�10�5ð ÞJ0;875ð Þtð Þ ð14Þ

As shown in Fig. 9 the obtained model fits the experi-

mental data very well.

5 Comparison with other aeration systems

In order to evaluate the oxygen transfer rate using the

electroflotation process, we have compared the results

found with those of other oxygenation systems. The com-

parison is based on the oxygenation capacity (OC) and the

oxygenation efficiency (RO).

OC ¼ KLa C� � C0ð Þ ð15Þ

RO ¼ OC V

mO2

100 ð16Þ

mO2 was determined by Faraday’s law:

mO2
¼ JSMO2

4F
ð17Þ

The results are given in Table 1.

The oxygenation capacity (OC) for the electroflotation is

comparable to that of other aeration systems. The electro-

flotation process gives the highest oxygenation efficiency

(RO). Indeed, for the majority of the systems (RO) does not

exceed 21%, while for electroflotation (RO) can reach 77%

which indicates the effectiveness of this process.

6 Conclusion

This work characterizes oxygen transfer in an electroflo-

tation cell. The volumetric mass transfer coefficient, KLa,

was evaluated for clean tap water as liquid phase and for

different values of current density, J. A model relating KLa

to current density was established. The global coefficient of

mass transfer based on the liquid film, KL, and volumetric

interfacial area, a, were dissociated. In order to compare

electroflotation process to other aeration systems transfer

criteria were calculated. The oxygenation efficiency (RO)

of the electroflotation process is higher than that of other

aeration systems and exceeds 75%.
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